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Abstract. The kinematical corrections to the structure function of the nucleon in the nucleus due to the
boundness and motion of nucleons arise from the excitation of the doorway states for one-nucleon transfer
reactions in the deep inelastic scattering on nuclei.

PACS. 25.30.Mr Muon scattering (including the EMC effect) – 11.10.St Bound and unstable states;
Bethe-Salpeter equations – 13.60.Hb Total and inclusive cross-sections (including deep-inelastic processes)

1 Introduction

It is known for more than 20 years that the cross-section
of the deep inelastic scattering (DIS) on a nuclear target
is not equal to the sum of cross-sections on free nucle-
ons [1]. This means that the interaction inside the nucleus
distorts the parton distribution in a nucleon. But at first
it is necessary to single out the kinematical effects aris-
ing from the boundness and motion of nucleons in nuclei
because otherwise it is hardly possible to conclude what
actually happens with the nucleon structure functions in
nuclear matter. This is the aim of our work rather than
the explanation of the EMC effect. The above kinematical
effect is due to the fact that the four-momentum of the nu-
cleon in the nucleus is not equal to that of a free nucleon.
Indeed, the heavy photon (γ∗) is absorbed by a single nu-
cleon and the deep inelastic scattering (DIS) proceeds via
the following stage1:

l + A → l′ + X + (A− 1)∗ ,

where l and l′ denote the incoming and outgoing leptons,
X is the final hadronic state after the γ∗-nucleon inter-
action and A is the target nucleus. Before absorbing the
heavy photon (γ∗) the struck nucleon has a certain energy-
momentum distribution in the nucleus. Besides this, the
“residual” (A− 1) nucleus is excited.

There were a few attempts to account for the Fermi
motion, boundness and the change of the effective

a e-mail: ryskin@thd.pnpi.spb.ru
1 We will focus on the region of a not too small Bjorken

x > 0.2 where the characteristic interaction time and distances
(∼ 1/mx) are less than the nucleon-nucleon separation in the
nucleus.

γ-nucleon flux factor inside the nucleus [2–4] (see [5] and
references therein for more details). They all were based
on the seemingly obvious assumption that the energy-
momentum distribution of the struck nucleon is described
by the ground-state one-nucleon spectral function,
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〉

,

(1)
where |A0〉 is the ground state of the target nucleus A,
a(p) and a†(p) are operators of the nucleon with momen-
tum p (the spin and isospin variables are omitted), H is
the nuclear Hamiltonian in the second quantization and
E0(A) is the ground-state binding energy of the nucleus A.
The calculations [3] were performed by using the follow-
ing semiempirical model for the quantity (1): the nucleon
energy distributions were described by the experimental
data on the separation energies of protons from the (e, e′p)
reactions [6] (the difference between the proton and neu-
tron separation energies was neglected leading to about
10% error) and calculating the momentum distributions
within the harmonic-oscillator model with the parameter
~ω0 = (45A−1/3 − 25A−2/3) MeV reproducing the ob-
served r.m.s. radii of nuclei.

Both the flux factor [4] and the correlations arising
from the interaction between nucleons are disregarded
in [3]. The inclusion of these effects is attempted in sub-
sequent works. In [7] the ground-state spectral function
was calculated within the Correlated Basis Function the-
ory [8] by taking into account the two-particle NN forces
only thus neglecting the multiparticle ones. But the latter
is in conflict with the observed energies of deep hole states
in doubly closed-shell nuclei [9]: as follows from these data
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the three-particle and four-particle forces are of the same
magnitude as the two-particle ones [10].

In [11] the nuclear-structure function is expressed
through that of the unphysical nucleus consisting of point
nucleons [12]. But to get the agreement with experiment
they used unreasonably large separation energies: they put
40MeV for 12C and 45MeV for 56Fe, whereas in the neigh-
bouring closed-shell nuclei 16O and 40Ca the average sep-
aration energies are 23.6MeV and 26.5MeV only [9].

For the above reasons the results [7] and [11] are in-
conclusive.

However, nobody realized in this connection that the
DIS on nuclei is a rapid process, and therefore the energy-
momentum distribution of the struck nucleon is described
by the spectral function of the nuclear mode which is ex-
cited via a sudden perturbation rather than that of the
ground state. Our work is based on the fact that the rele-
vant mode is provided by the doorway states for the one-
nucleon transfer reactions. As demonstrated in [10,13,14]
the above states are eigenstates of the nucleon in the static
nuclear field.

Recall that the microscopic nuclear models are based
on certain approximations for the in-medium nucleon mass
operator M . For instance, the nuclear shell model poten-
tial is the approximation for the mass operator at the nu-
clear Fermi surface, the optical model potential is dealing
with the mass operator at low and intermediate energies,
etc. In all the available approaches the mass operator in-
cludes all the Feynman diagrams which are irreducible in
the one-particle channel, and therefore it cannot be calcu-
lated. Instead it is described by a set of phenomenological
parameters.

In contrast to the above models, the nuclear static po-
tential is the mass operator at the infinite value of the
energy variable. Only the Hartree diagrams with the free
space (i.e. vacuum) nuclear forces survive in this case,
thus permitting the model-independent calculation of the
static field. So the doorway states (DS) under considera-
tion appear to be the unique nuclear object, both model-
independent and described by the exactly soluble problem.

The calculation [13] showed that the r.m.s. radii of the
DS density distributions are appreciably less than those
of the ground-state ones: for instance, the value of 〈r2〉 =
A−1

∫

ρ(r)r2d3r is 10.88 fm2 for the ground state of 40Ca
being only 8.76 fm2 for the DS. As a result, the nucleon
motion (i.e. the value of 〈p2〉) was underestimated in [3]
by about 25% 2.

In sect. 2 we briefly describe the formalism of the DS.
In sect. 3 the DIS structure functions F2 are calculated for
different nuclei and deuteron; to single out the boundness
and motion effects we disregarded the possible changes
of the parton distribution inside the nucleon in the nu-
cleus. In the last section we compare the calculated ratios
2F2A/AF2D with the available experiments.

2 For the same reason the kinematical effect was underesti-
mated in ref. [15] as well.

2 Doorway states for one-nucleon transfer

reactions

2.1 Theory

The evolution of the state arising from the one-nucleon
transfer to the nuclear ground state |A0〉 at the initial time
moment t = 0 is described by the single-particle propaga-
tor [16],

S(x, x′; τ) = −i〈A0|Tψ(x, τ)ψ
†(x′, 0)|A0〉

= iθ(−τ)

(A−1)
∑

j

Ψj(x)Ψ
†
j (x

′)e−iEjτ

−iθ(τ)

(A+1)
∑

k

Ψk(x)Ψ
†
k(x

′)e−iEkτ . (2)

At τ < 0 it describes the evolution of the hole state,

Ψj(x) = 〈(A− 1)j |ψ(x)|A0〉 , Ej = E0(A)− Ej(A− 1) ,
(3)

when the nucleon is removed from the ground state A0,
whereas at τ > 0 the evolution of the particle state is
described,

Ψk(x) = 〈A0|ψ(x)|(A+ 1)k〉 , Ek = Ek(A+ 1)− E0(A) ,
(4)

when the nucleon is added to the ground state A0. The
quantities Ej(A − 1), Ek(A + 1) and E0(A) are the total
binding energies of the states |(A − 1)j〉 of the (A − 1)
nucleus, the states |(A + 1)k〉 of the (A + 1) nucleus and
the ground state |A0〉 of the A one.

The Fourier transform of the propagator

G(x, x′; ε) =

∫

S(x, x′; τ)eiετdτ =

(A−1)
∑

j

Ψj(x)Ψ
†
j (x

′)

ε− Ej − iδ
+

(A+1)
∑

k

Ψk(x)Ψ
†
k(x

′)

ε− Ek + iδ
,

δ → +0 , (5)

obeys the Dyson equation

εG(x, x′; ε) = δ(x− x′) + k̂xG(x, x
′; ε)

+

∫

M(x, x1; ε)G(x1, x
′; ε)dx1 , (6)

where k̂x is the kinetic energy and the mass operator
M(x, x′; ε) includes all Feynman diagrams which are ir-
reducible in the one-particle channel.

We are interested in the very beginning of the evolu-
tion, i.e. the τ → 0 limit. According to the time-energy
Heisenberg relation this is equivalent to the limit ε→∞.
In this limit

G(x, x′; ε) =
I0(x, x

′)

ε
+
I1(x, x

′)

ε2
+
I2(x, x

′)

ε3
+ · · · , (7)
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where (see definition (1) of the propagator)

I0(x, x
′) =

(A−1)
∑

j

Ψj(x)Ψ
†
j (x

′) +

(A+1)
∑

k

Ψk(x)Ψ
†
k(x

′)

= i

[

S(x, x′; +0)− S(x, x′;−0)

]

, (8)

I1(x, x
′) =

(A−1)
∑

j

EjΨj(x)Ψ
†
j (x

′) +

(A+1)
∑

k

EkΨk(x)Ψ
†
k(x

′)

= −

[

Ṡ(x, x′; +0)− Ṡ(x, x′;−0)

]

, (9)

I2(x, x
′) =

(A−1)
∑

j

E2
jΨj(x)Ψ

†
j (x

′) +

(A+1)
∑

k

E2
kΨk(x)Ψ

†
k(x

′)

= −i

[

S̈(x, x′; +0)− S̈(x, x′;−0)

]

, (10)

the quantities I0, I1 and I2 thus describing the very be-

ginning of the evolution
(

Ṡ = ∂S
∂τ , S̈ = ∂2S

∂τ2

)

.

Now consider the mass operatorM(x, x′; ε). It includes
the energy-independent Hartree diagrams Ust(x)δ(x− x

′)
(which were shown in fig. 3 of ref. [14]), the higher-order
diagrams describing the nuclear correlation effects (the
lowest-order diagram of such kind was shown in fig. 4a
of ref. [14]) and the Fock ones (fig. 4b of ref. [14]). The
correlation diagrams include the propagators of interme-
diate states thus behaving as ε−1 in the ε→∞ limit (see
ref. [17] for a more stringent demonstration). The same is
valid for the Fock diagrams. Indeed, the interaction be-
tween baryons proceeds via the exchange by some parti-
cles (they are quark-antiquark pairs and/or gluons in the
QCD) and therefore both the momentum and the energy
are transferred through the interaction. As a result, the
Fock diagrams also include the intermediate-state prop-
agators thus being of order of ε−1 in the ε → ∞ limit.
(In ref. [10] this is demonstrated for the meson-nucleon
intermediate state). So the mass operator in this limit is

M(x, x′; ε) = Ust(x)δ(x− x
′) +

Π(x, x′)

ε
+ · · · (11)

ε→∞ .

Introducing the static Hamiltonian

hst = k̂x + Ust(x) , (12)

let us write down the high-energy limit Dyson equation in
the form

εG(x, x′; ε) = δ(x− x′) + hstG(x, x
′; ε)

+

∫
(

Π(x, x1)

ε
+ · · ·

)

G(x1, x
′; ε)dx1 . (13)

Putting into (13) the asymptotics (7) and equating the
coefficients at the same powers of ε−1, we get

(A−1)
∑

j

Ψj(x)Ψ
†
j (x

′) +

(A+1)
∑

k

Ψk(x)Ψ
†
k(x

′) = δ(x− x′),

(14)

(A−1)
∑

j

EjΨj(x)Ψ
†
j (x

′) +

(A+1)
∑

k

EkΨk(x)Ψ
†
k(x

′) =

hstδ(x− x
′), (15)

(A−1)
∑

j

E2
jΨj(x)Ψ

†
j (x

′) +

(A+1)
∑

k

E2
kΨk(x)Ψ

†
k(x

′) =

h2
stδ(x− x

′) +Π(x, x′). (16)

Equations (9), (12) and (15) may be written as

−
[

Ṡ(x, x′; +0)− Ṡ(x, x′;−0)
]

= hstδ(x− x
′) =

[kx + Ust(x)] δ(x− x
′) . (17)

As follows from the l.h.s. of (17), the Hamiltonian hst de-
scribes the very beginning of the one-nucleon transfer pro-
cess the eigenstates of hst thus being the doorway states
for the one-nucleon transfer reactions. On the other hand,
the r.h.s. of (17) shows that the Hamiltonian hst describes
the motion of the nucleon in the nuclear static field Ust(x).
Indeed, the latter is expressed through the free-space NN
forces rather than the effective ones, thus being the nu-
cleon field rather than the quasiparticle one. So we proved
that the doorway states for the one-nucleon transfer fast
reactions are the eigenstates of the nucleon in the nuclear
static field.

2.2 Doorway eigenfunctions

Since the doorway states (DS) describe the motion of the
nucleon in the nuclear static field, the corresponding eigen-
functions may be calculated in a model-independent way.
Indeed, the two-particle forces are determined from the ex-
perimental data on the elastic nucleon-nucleon scattering
(i.e. from the phase shifts analysis) [18] and the deuteron
properties. The necessary information about the multipar-
ticle forces is obtained from the observed energy spectra
of the doorway states [10]. So the only additional informa-
tion needed for the calculation of the static field in a given
nucleus is that on the nucleon density distributions in this
nucleus. In all the nuclei which are treated in the present
paper these distributions are spherically symmetric thus
leading to the static field with the same symmetry. Hence,
the quantum-mechanical problem is the motion of a par-
ticle in a central field. This problem is solved with any
desired accuracy and without any simplifications.

We have to emphasize that the doorway states are not
the eigenfunctions of the total nuclear Hamiltonian thus
being fragmented over the actual nuclear states owing
to the correlation effects. The observed spreading width
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of the DS is about 20MeV; that is the relaxation time
∼ 0.3 · 10−22 s. This is much larger than the time charac-
teristic for DIS which is of the order of 2q0/Q

2 ' 1/mx ∼
3 · 10−24 s in the nucleus rest frame. So during the DIS
process the DS do not have time to be distorted by the
correlations thus permitting the exact account for the nu-
cleon boundness and motion to the EMC effect.

The relevant energy-momentum distribution of nucle-
ons for DIS is determined by the spectral function of the
DS (rather than the ground-state one):

SDS(ε, ~p ) = Sp(ε, ~p ) + Sn(ε, ~p ) , (18)

where the proton spectral function is

Sp(ε, ~p ) =
1

4π

(p)
∑

λ

νλfλ(~p )δ(ε− ελ) . (19)

The sum in the r.h.s. runs over the proton DS, λ stands
for the angular momentum j and other quantum numbers
of a particle state in the central field, νλ is equal to 2j+1
for the filled states and the actual number of nucleons on
partly filled ones, ελ are the DS energies and fλ(p) are
found by solving the Dirac equation (see refs. [10,14] for
details):

hstψλ(~r ) = ελψλ(~r ) . (20)

The function fλ(p) = u2
λ(p) + w2

λ(p), given by the sum of
the upper and lower components square of the bi-spinor
ψλ(p) (in momentum space), is normalized by the condi-
tion

∫

fλ(p)p
2dp = 1 . (21)

The neutron spectral function obeys the same relation
in which the proton DS are substituted by the neutron
ones.

It is instructive to mention that the spectral functions
SDS(ε, ~p ) is evidently Lorentz invariant obeying the fol-
lowing normalization:

∫

SDS(ε, ~p )dεd
3p =

∫

SDS(p)d
4p = A (22)

(here p0 = m+ ε, so dp0 = dε).
The calculations were performed for 12C, 14N, 27Al,

40Ca, 56Fe and 63Cu. The reason is as follows. As men-
tioned above, the necessary information for the calcula-
tions is that about the proton and neutron density dis-
tributions. The former is available throughout the whole
periodic system [19], but this is not the case for the lat-
ter: the neutron densities are available only for the doubly
closed-shell nuclei 16O, 40Ca, 90Zr and 208Pb [20]. That is
why we confined ourselves to nuclei with a small neutron
excess: the density distributions per nucleon are nearly the
same for protons and neutrons in these nuclei [21].

To calculate the eigenfunctions, the Bonn-B [18] and
OSBEP [22] NN -potentials were used3. In both cases the
results are very close to each other. The difference never
exceeds 0.5% for x < 0.6 and is less than the experimental
error bars in the domain where the ratio (25) Rth > 1.

3 For the deuteron the Bonn-B wave function was used in
both cases.

3 Deep inelastic cross-section on the nuclear

target

The DIS cross-section is usually written in terms of the
structure function F2(x,Q

2), that is the cross-section of
electron-nucleon interaction,

dσ

dxdQ2
'

4πα2

xQ4

(

(1−y +
y2

2
)F2(x,Q

2)−
y2

2
FL(x,Q

2)

)

,

(23)
where we neglect the nucleon mass m2

N = m2 in compari-
son with the total energy square s = (k+p)2 À m2. Here:
k, q, p are the 4-momenta of the incoming electron, heavy
photon and the target nucleon, respectively. Q2 = −q2,
x = Q2/2(p · q) and y = (q · p)/(k · p). α = 1/137 is the
electromagnetic coupling.

As a rule, the data are taken at rather small y, where
the coefficient y2/2 in front of the longitudinal part (FL)
is small. Next, the ratio RL = FL/F2 ∼ 0.2 is not large.
Moreover, unlike the F2, the function R

L does not appear
to depend on the atomic number A [5].

Therefore, the ratio of the cross-sections is given usu-
ally in terms of the ratio of the structure functions F2.

In order to compare our results with the data, where
experimentalists already accounted for the difference be-
tween proton and neutron, we write the structure function
of the nucleus as

1

A
F2A(x,Q

2) =
1

A
(ZF2pA +NF2nA)

=
F2nA(x,Q

2) + F2pA(x,Q
2)

2

+
N − Z

2A
(F2nA − F2pA) (24)

and select the isospin I = 0 part of F2 given by the first
term of (24). The ratio which we will discuss reads

Rkin(x,Q
2) =

F2nA(x,Q
2) + F2pA(x,Q

2)

F2D(x,Q2)
. (25)

The structure function of the proton in the nucleus

F2pA(x,Q
2) =

1

Z

(p)
∑

λ

νpλF2pλ(x,Q
2) , (26)

where νpλ is the actual number of protons on the level λ
(νpλ = 2j+1 for the completely occupied shell). Note that
in the experimental data the variable x was calculated as-
suming the proton momentum pN equal to the momentum
of a free proton at rest, pN = (mN , 0, 0, 0). However, to
single out the precise “kinematics”, one must account for
the change of the nucleon structure function (parton dis-
tributions) in the medium caused by the change of the
Bjorken variable x = Q2/2(p · q). In other words, calcu-
lating the momentum fraction x′ carried by the quark we
need to use the precise four-momentum of the nucleon in
the medium. That is,

x′ =
Q2

2(pq)
=

Q2

2(p0q0 − ~p ~q )
=

mx

m+ ελ − βpt
, (27)
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where β = |~q |/q0 = (1 + 4m2x2

Q2 )1/2 and the variable t is

the cosine of the angle between ~p and ~q.
Next we have to note that the structure function F2,

which at the LO reads

F2 =
∑

f

e2f (xqf (x) + xq̄f (x)) (28)

(ef is the electric charge of the quark of flavour f), con-
tains two factors: the quark (antiquark) distribution q(x)
(q̄(x)) and the kinematical factor x. The origin of this
kinematical factor is as follows. The covariant quantity is
not the cross-section but the discontinuity of the dimen-
sionless interaction amplitude ImA ' sσ. Going from the
amplitude A to the cross-section σ ∝ 1/Q2, we obtain the
factor xA = Q2/2(pq) which corresponds to the true nu-
cleus target and must be calculated as xA = AQ2/2mAν,
where mA is the mass of the nucleus and ν = q0 is the
photon energy in the nucleus rest frame. As discussed in
sect. 2.2 the time of DIS on nuclei is at least an order of
magnitude less than the nuclear relaxation one. This time
interval is insufficient to measure the exact total mass of
the target nucleus: only its part

mA =

(p)
∑

λ

νpλ(m+ εpλ) +

(n)
∑

λ

νnλ(m+ εnλ) (29)

associated with the doorway states can be fixed in such
conditions. For this reason we have to use the quantity
mA as the target nucleus mass. This provides both the
baryon charge conservation (in a sense this is equivalent
to the prescription given in [4], where the authors ac-
counted for the relativistic flux factor and used the baryon
charge conservation to normalize the spectral functions
of protons and neutrons) and the validity of the energy-
momentum sum rule, thus avoiding the problem men-
tioned in refs. [23,24]. Indeed, the total 4-momentum, that
is the energy of the nucleus in its rest frame, carried by
partons in the nucleus, is mA within our prescription (as
a rule, the mA value is about 3% less than the actual
ground-state mass of the nucleus4).

Thus, in (26) we need to calculate the function

F2pλ(x,Q
2) =

1

2

pλ
∫

0

fλ(p)p
2dp

1
∫

−1

xA
x′
F2p(x

′, Q2)dt

+
1

2

∞
∫

pλ

fλ(p)p
2dp

∫ pλ/p

−1

xA
x′
F2p(x

′, Q2)dt . (30)

Here pλ = ((1 − x)m + ελ)/β, and fλ(p) was defined in
sect. 2.2 5.

4 For example, the “doorway” mass of 40Ca is m (doorway) =
0.968m (ground state).

5 Strictly speaking, (30) is correct for a positive pλ only.
When x is close to 1 and pλ becomes negative, one has to
keep only the last term in (30) with the integration from −pλ
up to ∞. In this case the values of t < 0 and x′ < x. So the

Exactly the same formulae is used for the neutron in
the nucleus.

For the deuteron

F2D(x,Q2) =
1

2

∫ pD

0

fD(p)p2dp

∫ 1

−1

xD
x′D

(F2p(x
′
D, Q

2)

+F2n(x
′
D, Q

2))dt

+
1

2

∞
∫

pD

fD(p)p2dp

pD/p
∫

−1

xD
x′D

(

F2p(x
′
D, Q

2)

+F2n(x
′
D, Q

2)
)

dt (31)

with
x′D =

mx

mD −
√

p2 +m2 − βpt

and pD = (β(mD −mx)−
√

(mD −mx)2 + (β2 − 1)m2)/
(β2−1); fD(p) is just the sum of the squared monopole and
quadrupole components of the deuteron wave function;
mD is the deuteron mass. Note that denominator in the
expression for x′D corresponds to the kinematics where the
spectator nucleon is on-mass-shell.

The F2p(x,Q
2) and F2n(x,Q

2) free nucleon struc-
ture functions were calculated using the MRST2002 NLO
parametrization [25] obtained from the global parton anal-
ysis.

4 Discussion

The results of calculations are presented in tables 1–5 and
fig. 1. The predictions made using the Bonn-B and OSBEP
potentials are very close to each other. So we present the
results for the case of the Bonn-B potential only.

Recall that here we assume the parton distributions
inside the nucleon in the nucleus to be the same as that
for the free nucleon and evaluate the pure kinematical
effect of the boundness and the motion of the nucleon in
nuclear matter. Using the doorway states, which are the
correct eigenfunctions to describe the fast interaction with
one nucleon, we account for the full 4-momemtum of the
(target) nucleon and for the excitation of the “residual”
nucleus (A− 1).

Thus, the difference between the calculated value of
Rkin and the data indicates the distortion of the parton
wave function of a nucleon placed in the nuclear medium.

As expected, the account of the boundness and Fermi
motion of nucleons in nuclei diminishes the cross-section
in the x = 0.2–0.63 interval. Indeed, due to the boundness
(and the fact that about 24–27MeV is spent for the ex-
citation of the residual (A − 1) nucleus), the mean value
of the shifted argument x′ (27) is larger than the value of
x on a free nucleon. On the other hand, in this domain
the free-nucleon structure function F2 falls down with x.
Therefore, we get Rkin < 1.

quantity F2λ has non-zero value even at x = 1. Note, how-
ever, that for experimentally available x values the quantities
pλ never become negative.
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Table 1. The ratio of structure functions FA
2 measured on

carbon to that on deuteron. The values of Q2 are given in
GeV2.

12C NA-037 NMC [26]

x Q2 Rexp (±) Rkin

.125 12.0 1.032 ( .012) 0.997

.175 15.0 1.011 ( .015) 0.994

.250 20.0 1.010 ( .015) 0.990

.350 27.0 0.971 ( .020) 0.985

.450 32.0 0.975 ( .029) 0.985

.550 37.0 0.925 ( .043) 0.999

.650 41.0 0.873 ( .064) 1.052

Table 2. The ratio of structure functions FA
2 measured on

nitrogen to that on deuteron. The values of Q2 are given in
GeV2.

14N NA-4 BCDMS [27]

x Q2 Rexp (±) Rkin

.100 32.0 1.018 ( .039) 0.997

.140 40.0 1.018 ( .031) 0.995

.180 49.0 1.002 ( .024) 0.993

.225 56.0 1.035 ( .025) 0.990

.275 56.0 1.024 ( .027) 0.988

.350 67.0 0.983 ( .025) 0.985

.450 77.0 0.941 ( .031) 0.985

.550 84.0 0.891 ( .047) 0.999

.650 96.0 0.826 ( .075) 1.053

Table 3. The ratio of structure functions FA
2 measured on

calcium to that on deuteron. The values of Q2 are given in
GeV2.

40Ca NA-037 NMC [28]

x Q2 Rexp (±) Rkin

.113 4.3 0.994 ( .010) 0.998

.138 5.1 1.007 ( .012) 0.996

.175 6.2 1.001 ( .011) 0.994

.225 7.7 1.015 ( .014) 0.990

.275 9.1 0.998 ( .018) 0.986

.350 11.0 0.996 ( .019) 0.981

.450 14.0 1.024 ( .031) 0.978

.600 17.0 0.955 ( .038) 1.005

At a large x, close to 1, the details of the angular inte-
gration (over t in (30)) become important. For a negative t,
due to a Fermi motion, there is a region where x′ < x (see
(27)). Thanks to the contribution coming from this region
the value of Rkin becomes larger than 1 for x > 0.65–0.7.

Clearly, besides the Fermi motion there should be
some dynamical effects. At a large x the growth of the
ratio R(x,Q2) with x is usually attributed to short-

Table 4. The ratio of structure functions FA
2 measured on iron

to that on deuteron. The values of Q2 are given in GeV2.

56Fe NA-4 BCDMS [29]

x Q2 Rexp (±) Rkin

.100 22.0 1.057 (.021) 0.996

.140 25.0 1.046 (.020) 0.994

.180 29.0 1.050 (.018) 0.991

.225 46.0 1.027 (.019) 0.988

.275 49.0 1.000 (.021) 0.984

.350 59.0 0.959 (.020) 0.979

.450 72.0 0.923 (.028) 0.977

.550 72.0 0.917 (.040) 0.991

.650 72.0 0.813 (.053) 1.047

Table 5. The ratio of structure functions FA
2 measured on

copper to that on deuteron. The values of Q2 are given in
GeV2.

63Cu NA-037 NMC [30]

x Q2 Rexp (±) Rkin

.123 11.0 1.041 ( .026) 0.996

.173 16.1 1.031 ( .023) 0.993

.243 19.3 1.018 ( .024) 0.988

.343 25.8 0.962 ( .032) 0.981

.444 36.0 0.959 ( .047) 0.978

.612 46.4 0.918 ( .056) 1.016

Table 6. The kinematical part Rkin of the ratio F d
2 /[F p

2 +Fn
2 ]

calculated using the Bonn-B potential.

x Q2 = 5 10 20 50 100 200 (GeV2)

.05 Rkin = 1.000 .999 .999 .999 .998 .998

.10 Rkin = .999 .999 .998 .998 .997 .997

.14 Rkin = .998 .998 .997 .997 .996 .996

.20 Rkin = .996 .996 .995 .995 .994 .994

.35 Rkin = .990 .990 .989 .989 .989 .989

.45 Rkin = .987 .987 .987 .987 .987 .987

.55 Rkin = .988 .988 .988 .989 .990 .991

.65 Rkin = 1.005 1.004 1.004 1.006 1.008 1.011

.75 Rkin = 1.080 1.073 1.071 1.075 1.080 1.085

.85 Rkin = 1.440 1.396 1.382 1.391 1.408 1.431

range nucleon-nucleon correlations [31] or to multiquark
bags [32] (see, for details, the reviews [5,31] and references
therein). However, contrary to the conventional expecta-
tions, the theoretical value of Rkin resulting after the ac-
count of the Fermi motion in the doorway states is even
larger than the value Rexp measured experimentally6.

6 Since the same effect was observed both at relatively low
Q2 in SLAC data and for a larger Q2 at CERN, this cannot
be explained by the account of the mass correction.
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Fig. 1. The ratio of structure function FA
2 measured on the nucleus A to that on deuteron. Q2 = 5GeV2. The data are taken

from [33]. The squares are the ratio Rkin calculated using the Bonn-B potential.

This means that in the nuclear medium the
(one-nucleon) parton distribution becomes softer, that is
the probability to find a parton with x > 0.45 inside the in-
medium nucleon is less than that in a free nucleon. In other
words, in the medium the quark distribution is shifted to-
wards a lower x, leading to a decrease of the quark den-
sity at x > 0.45 and to a larger quark density at a lower
x ∼ 0.1–0.2.

Next, at small x < 0.2 the partons from different
(neighbouring) nucleons start to overlap and to interact
with each other. Indeed, according to the uncertainty prin-
ciple, the characteristic size of localization is ∆r ∼ 1/mx
and for x < 0.2 the value of ∆r > 1 fm becomes compa-
rable with the nucleon-nucleon separation. At a very low
x the partons screen each other and this shadowing cor-
rection results in a decreasing of R(x,Q2). Another way
to describe this effect is to say that two low-x partons
from two different nucleons recombine into one parton.
However, the whole energy must be conserved. This leads
to the antishadowing (growth of the parton density) [34]
(see the reviews [5,31] for more details) just in the re-
gion (x ∼ 0.1–0.2) of the beginning of recombination. On
the other hand, this antishadowing effect is expected to

reveal itself more in the gluon distributions than in the
quark structure function.

Thus, it is not surprising that in the interval
0.2 < x < 0.45 the ratio given by the pure kinematical ef-
fects, Rkin (25), is close (within the error bars) to that
observed experimentally, Rexp.

Note that, at large x, the Fermi motion is not negligi-
ble, even for the deuteron. The ratio RD,kin = F2D/(F2p+
F2n) is close to unity for x < 0.65, but it noticeably differs
from unity for x > 0.75, reaching values of RD,kin = 1.07
(1.42) at x = 0.75 (0.85), see table 6.

An analysis performed by the MRST group shows that
if this effect is included, then one obtains practically the
same partons, but the description of the high-x deuteron
data is much improved; with χ2 reduced by 20 for the 12
deuteron data points that are fitted at x = 0.75 7.

After the present work was completed, we have read
the recent paper of A. Molochkov [35] where another
(but not quite different from that used here) prescription

7 We thank R.S. Thorne and A.D. Martin for discussions and
for performing a new analysis using our Fermi motion in the
deuteron.
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was proposed to account for the boundness and momen-
tum distribution of nucleons. A. Molochkov had consid-
ered the ratio of the 4He to deuteron structure functions.
The shortness of his prescription is the assumption that
both the nucleon structure function F2 and the momen-
tum distribution of the nucleons in the nucleus fN (PA, p)
are regular (i.e. have no singularities) with respect to
p0. Besides this, some terms, coming from the differen-
tiation of the nucleus (A − 1) propagator and the fac-

tor 1/(p0+
√

m2 + p2)2 (corresponding to the antinucleon
pole) in the nucleon propagator, which are proportional to
the binding (or nuclear excitation) energy, were omitted
in [35]. We hope that our approach, based on the “door-
way” formalism is more precise. Moreover, in terms of
Molochkov’s integral, our result may be obtained by clos-
ing the integration contour over p0 in the upper half-plane
(on the pole corresponding to the residue (A−1) nucleus)
instead of the lower one as was done in [35].

However, we are planning to compare both approaches
in a forthcoming paper, using the doorway eigenfunctions
to describe the distributions of nucleons in heavier nuclei.
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